
3-D Convex Hull
Milestone2 Project Report

Zhicheng Wang, Zhaowei Xu, Sujun Zhu

University of Southern California, Viterbi School

Los Angeles, USA

zhichenw@usc.edu, zhaoweix@usc.edu, sujunzhu@usc.edu

Abstract—We give a simple interpretation and a

simple implementation of the classical divide-and-

conquer algorithm for computing 3-d convex hulls (and

in particular, 2-d Delaunay triangulations and Voronoi

diagrams).

Keywords—convex hull; divide-and-conquer; quick

hull; deleting points; inserting points

I. INTRODUCTION AND MOTIVATION

Problem: Finding 3D convex hull, the smallest 3D surfaces that

wrap all the given point in 3D space, with hardware implemented

by Verilog on FPGA board.

Motivation: Building stronger skills and experience in Verilog

coding and problem solving, possibly finding better solution to

3D convex hull, and understanding the graphics dealing.

Main Challenges:

-Solving 2-D convex hull problem and expanding situation into

3-D convex hull problem, and we have two algorithms: 1) Divide

and Conquer; 2) Quick Hull.

-The challenge of Divide and Conquer Algorithm is to solve

merging cases: we divided points into two parts recursively, and

for two adjacent base parts, we need to merge them by deleting

and/or remaining certain points.

-The challenge of Quick Hull is to find the certain facet: we need

to find three certain points to make the initial facet and find the

most remote points and making new facets.

-Visualizing the 3D solution: representing depth and shapes on

multiple view-angle or generating 3D graph

II. PREVIOUS WORK

A. Other Algorithms

 “A Minimalist’s Implementation of the 3-d Divide-and-
Conquer Convex Hull Algorithm”, by Timothy M. Chan

 The Gift-wrapping Algorithm [1] computes the convex
hull in O(n^2) time by generating facets one at a time via
an implicit breadth- or depth-first search.

 The Incremental Methods [2] maintain the convex hull as
points are inserted one at a time.

B. Divide and Conquer

 The Divide and Conquer method [3] [4] is earliest to achieve

O(n log n) running time. Divide the point set into two hulls

recursively and merge two adjacent hulls by using “bridge”[5].

C. Quick Hull

 The Quick Hull [6] divides point set to two hulls by finding a

certain facet and then find the most remote point to form new

facets and find points recursively.

III. APPROACH AND CONCRETE EXPERIMENTS

A. The Problem:

 We have various methods to compute convex hull in 2-D, but

in 3-D, some methods are not efficient and even do not work.

We want to use the most efficient one if possible.

B. The Possible Approaches and Challenges:

 The Divide and Conquer method: firstly project the 3D
point set onto a 2D image by keeping points’ x coordinate,
changing y coordinate to z-t*y and deleting z coordinate.
Then the problem changed into finding 2D convex hull for
a set of 2D images where z-t*y vary from y to z;
recursively divide the 2D point set into two parts based on
their x value until every part only has 1 point; then by
returning, every level except the lowest one has two
complete convex hulls to merge; we build two “bridges”
and move it until their curvature indicate that they are at
the boundaries of the resulting convex hull. The two
bridges and part of the original points from two input
convex hulls not wrapped by the bridges can form the
resulting convex hull.

 Challenges: the way to implement the method of
turning 3D convex hull into 2D images is still questionable in
our point of view.

 The 3D Quick Hull method is similar to the 2D one, in
order to divide two hulls of points, we need to determine a
facet at first to divide two hulls of points, and then in
either space, we find the most remote point and form new
facets; then we find points and facets recursively.

 Challenges: Quick Hull finds the shell’s points randomly
and determining what three points to form a surface is
challenging.

mailto:zhichenw@usc.edu,
mailto:zhaoweix@usc.edu,
mailto:sujunzhu@usc.edu

C. The Explanation of Approaches and Assumption:

 For Divide and Conquer method, we are putting our bet
on it since according to Chan’s paper, it is proven to be
the quickest 3D convex hull algorithm.

 Figure1. Merging two 2-D lower hulls.

 In the merging process, we connect rightmost point of L and
leftmost point of R to form an initial bridge. Then we adjust
this bridge’s end points, u and v, by checking if u--u-v is
counter-clockwise. This check can be done by examining if
(u.x – u-.x)*(u-.y – v.y) – (u-.y – u.y)*(v.x - u-.x) is negative.
If (u,v) is counter-clockwise then (u,v) is the outside bridge
we are trying to find.

 For Quick Hull method, we can sort the points and find
the closest and farthest points, and we just need one more
point which is one of the convex points. Thus we can sort
the points again but sort the y-axis value; then we can pick
the farthest point on y-axis. These three points are
definitely convex points, therefore we can use these three
points to form a facet and find farthest point in space
divided by the facet. Then we can form new facets and
find the most remote points recursively.

D. Stateflow chart of 2D-QuickHull:

The following is an attempted QuickHull implementation by
Stateflow. It takes a matrix of points and output as a matrix of
edges (Figure3), 0 as none while 1 as an edge between those
two points. Figure 2 is a more detailed algorithm. Two of the

Figure2. Attempted 2D-QuickHull Algorithm flow chart1

main difficulties remain to be solved (with possible solution
here): 1) the recursion transformation to iteration through
buffer set-up and good recursion level prediction; 2) memory

allocation and data structure set-up in Stateflow, where we
need to find the best way to store and use the data.

 Figure3. QuickHull Algorithm flow chart 2

IV. CONCLUSION AND SHORT-TERM PLAN

A. Conclusion:

1) The main idea and findings:

To solve 3-D convex hull problem, we have two major

algorithms, the Divide and Conquer method and the Quick Hull

method. They have their own benefits and challenges.

2) The findings:

The Divide and Conquer method is the most efficient

and suitable to the 3-D convex hull problem. We can use the

parallelization when we take multiple projections at the same

time and combine the results. But the conversion from 3D model

to 2D images is difficult to implement.

The Quick Hull method is relatively easier to

understand, but its running time is from O(nlog(n)) to O(n^2),

which is a trade-off. We can still use the parallelization when

dealing with the most remote point of each sides.

B. Short-term Plan and Milestone3 topic:

We will figure out which algorithm is suitable as soon

as possible. Thus we will try to figure out the complexity in

terms of hardware between the Divide and Conquer method and

the Quick Hull method, and finally choose one.

In next presentation, we will determine our algorithm

and conclude the reason and the progress we get on this

algorithm, such as its sanity and use of the parallelization.

C. Anticipated outcome:

 Since the time (t) variable in the D&C is really hard to
manipulate, we may choose the Quick Hull and record the
progress of using the Quick Hull.

REFERENCES

[1] D. R. Chand and S. S. Kapur. An algorithm for convex polytopes. J. ACM,
17:78–86, 1970.

[2] K. L. Clarkson and P. W. Shor. Applications of random sampling in
computational geometry, II. Discrete Comput. Geom., 4:387–421, 1989.

[3] M. I. Shamos and D. Hoey. Closest-point problems. In Proc. 16th IEEE
Sympos. Found. Comput. Sci., pages 151–162, 1975.

[4] F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two
and three dimensions. Commun. ACM, 20:87–93, 1977.

[5] Timothy M. Chan.A Minimalist’s Implementation of the 3-d Divide-and-
Conquer Convex Hull Algorithm.2003

